Overview

This tutorial documents the complete Quantum MetaTT (Meta Trading Telepathy) Python implementation, which integrates quantum state tomography, Bell inequality testing (CHSH & CGLMP), and the Aaronson quantum information supremacy framework for financial prediction tasks.

GitHub Repository: github.com/teraq-platform/teraq-finance

Key Features: Complete pipeline from LOBSTER data training → Bell state preparation → Minimal tomography → Density matrix reconstruction → CGLMP/CHSH computation → Aaronson framework analysis → Distributed entanglement analysis

Script Architecture

Core Classes

1. BellInequality (Base Class)

  • Abstract base class for Bell inequality implementations
  • Methods: classical_bound(), quantum_bound(), compute_from_density_matrix()

2. CHSH (BellInequality)

  • CHSH inequality for qubits (d=2)
  • Classical bound: 2.0, Quantum bound: 2√2 ≈ 2.828
  • Key methods:
    • predict_chsh(visibility): Analytical prediction
    • compute_from_density_matrix(rho): Compute from density matrix
    • compute_from_density_matrix_specific_qubits(rho, qubits): For specific qubit pairs

3. CGLMP_Analytical (BellInequality)

  • CGLMP inequality for qudits (generalizes CHSH to d>2)
  • Supports d=2, d=4, d=8 dimensions
  • Quantum bound: 2.0 + (d-1)/d × √2
  • Key methods:
    • predict_cglmp(visibility): Analytical prediction
    • compute_from_density_matrix(rho): Direct computation from density matrix
    • _expectation_value(rho, setting_a, setting_b): Compute correlation functions

4. NoiseAnalysis

  • Comprehensive noise and latency analysis
  • Methods:
    • compare_bell_inequalities(visibility_range): Compare CHSH vs CGLMP
    • noise_threshold_analysis(): Find minimum visibility for violations
    • latency_budget(hardware_spec, n_tomo_measurements): Complete latency breakdown
    • optimization_strategies(current_latency_us, target_us): Suggest optimizations

5. AaronsonAnalysis

  • Quantum information supremacy analysis (arXiv:2509.07255)
  • Maps Bell violations → visibility → FXEB → classical bits required
  • Key methods:
    • bell_to_visibility(bell_value, bell_type): Convert Bell value to visibility
    • visibility_to_fxeb(visibility): Convert to FXEB parameter ε
    • classical_bits_required(epsilon, n_qubits, measurement_type): Compute classical bits
    • comprehensive_fiber_channel_analysis(max_distance_km): Distributed entanglement analysis

6. MinimalTomography

  • Minimal Pauli tomography for 6-qubit system (Schwemmer et al., arXiv:1310.8465)
  • Methods:
    • generate_minimal_pauli_set(): Generate ~45 Pauli measurements
    • run_tomography(qc): Execute tomography
    • reconstruct_density_matrix(expectations): Three reconstruction methods (LIN, ML, Physical)

7. QuantumMetaTT_Hybrid (PyTorch Model)

  • Hybrid classical-quantum neural network
  • Components:
    • HybridQubitQuditMPSLayer: Quantum MPS layer with 12 qubits, bond dimension d=8
    • Classical input/output layers
    • 8-class financial prediction output

8. HardwareSpec

  • Real hardware specifications for superconducting, trapped ion, Quantinuum
  • Methods:
    • get_spec(platform): Get hardware specs
    • build_noise_model(platform): Build realistic noise model

Main Pipeline (main() function)

Step 1: Load LOBSTER Data

  • Loads limit order book data from LOBSTER dataset
  • Preprocesses: 40 features → 8-class labels (price movement + volume regime)
  • Function: load_lob_data(data_dir, use_test)

Step 2: Train Quantum MetaTT

  • Trains hybrid quantum-classical model on financial data
  • 15 epochs, batch size 512, Adam optimizer
  • Output: Trained model with test accuracy

Step 3: Prepare Bell State Circuit

  • Creates d=8 qudit Bell state using 6 qubits
  • Function: create_bell_state_d8()
  • Structure: 3 Bell pairs (qubits 0-3, 1-4, 2-5)

Step 4: Run Minimal Tomography

  • 49 Pauli string measurements (vs 4,096 for full tomography)
  • 5,000 shots per measurement
  • Output: Dictionary of Pauli expectation values

Step 5: Reconstruct Density Matrix

  • Three methods: Linear Inversion (LIN), Maximum Likelihood (ML), Physical Projection
  • Compares with ideal state and direct noisy simulation
  • Output: Density matrices and fidelities

Step 6: Compute CGLMP & CHSH

  • Computes Bell inequality values from reconstructed density matrix
  • Compares measured vs predicted values
  • Analyzes noise sensitivity

Step 7: ISM Trading Certification

  • Complete latency breakdown
  • Checks if total latency < 10 μs target
  • Provides optimization strategies if exceeding budget

Step 8: Aaronson Framework Analysis

  • Maps Bell violations → visibility → FXEB → classical bits
  • Compares CHSH vs CGLMP at same visibility
  • Error impact analysis
  • Comparison to Kretschmer et al. paper results

Step 9: Comprehensive Fiber Channel Analysis

  • Analyzes CGLMP vs CHSH over fiber optic channels (0-300 km)
  • Three hardware scenarios: Superconducting, Trapped Ion, Quantinuum
  • Corrected physics model: Signal-to-noise visibility (not just photon loss)
  • Output: Maximum violation ranges, distance advantages

Key Code Snippets

# Bell State Preparation (d=8 qudit pair)
def create_bell_state_d8():
    """Create maximally entangled d=8 qudit pair"""
    qc = QuantumCircuit(6, name='Bell_d8')
    qc.h(0)
    qc.h(1)
    qc.h(2)
    qc.cx(0, 3)
    qc.cx(1, 4)
    qc.cx(2, 5)
    return qc

# CGLMP Computation
def compute_from_density_matrix(self, rho):
    I_cglmp = 0.0
    for k in range(self.d - 1):
        k_next = (k + 1) % self.d
        E_0k = self._expectation_value(rho, 0, k)
        E_1k = self._expectation_value(rho, 1, k)
        E_1k_next = self._expectation_value(rho, 1, k_next)
        E_0k_next = self._expectation_value(rho, 0, k_next)
        I_cglmp += np.real(E_0k - E_1k + E_1k_next + E_0k_next)
    return I_cglmp

# Aaronson Framework: Classical Bits Required
def classical_bits_required(self, epsilon, n_qubits, measurement_type='clifford'):
    # First term: ε² × 2^n
    term1 = epsilon**2 * (2**n_qubits)
    # Second term: ε × 2^(n - O(√n))
    coefficient = 1.5 if measurement_type == 'clifford' else 1.0
    term2 = epsilon * (2**(n_qubits - coefficient * np.sqrt(n_qubits)))
    # Take minimum
    return min(term1, term2)

Usage Instructions

Prerequisites

  • Python 3.8+
  • Required packages: numpy, pandas, torch, qiskit, qiskit-aer
  • LOBSTER dataset (or synthetic data will be used if unavailable)

Running the Script

# Clone the repository first
git clone https://github.com/teraq-platform/teraq-finance.git
cd teraq-finance
pip install -r requirements.txt

# Basic execution
python3 quantum_metatt_final_corrected.py

# The script will:
# 1. Prompt for hardware platform selection (1-3)
# 2. Load/train on LOBSTER data
# 3. Execute full pipeline
# 4. Output comprehensive analysis

Configuration

  • DATA_DIR: Path to LOBSTER dataset
  • USE_TEST_FILES_FOR_TRAINING: Use test files for training (faster)
  • FAST_MODE_SHOTS: Number of shots per measurement (default: 5000)

Google Paper Comparison: Distributed GHZ State Coding

Google Quantum AI (arXiv:2512.02284): "Quantum–Classical Separation in Bounded-Resource Tasks"

Published: December 1, 2025

Key Focus: Measurement contextuality and N-player GHZ games for quantum-classical separation

Google's Approach: N-Player GHZ Parity Game

  • State: N-qubit GHZ state |GHZ⟩ = (|0...0⟩ + |1...1⟩)/√2
  • Game: N players receive classical bits xⱼ ∈ {0,1} with promise Σⱼ xⱼ is even
  • Win Condition: Players output yⱼ such that Σⱼ yⱼ = Σⱼ xⱼ/2 (mod 2)
  • Classical Success: 1/2 + 1/2⌊N/2⌋ (random guessing)
  • Quantum Success: Perfect (100%) with GHZ state
  • Contextuality: Demonstrates measurement contextuality in many-body systems

Google's Key Results

  • Implemented magic square game and Kochen-Specker-Bell inequality violation
  • Demonstrated N-player GHZ game exceeding classical success rate
  • Solved 2D hidden linear function problem with quantum advantage
  • Proposed contextuality-based benchmarking for quantum processors
  • Emphasis: Contextuality (not just entanglement) as computational resource

Contrast: MetaTT vs Google Approach

Aspect Google (arXiv:2512.02284) MetaTT Implementation
Quantum State N-qubit GHZ state (|0...0⟩ + |1...1⟩)/√2 d=8 qudit Bell pairs (3 pairs, 6 qubits total)
Focus Measurement contextuality Bell inequality violations (CHSH, CGLMP)
Application Contextuality-based benchmarking Financial prediction & HFT coordination
Distributed Coding N-player cooperative games Distributed entanglement over fiber (50-300 km)
Performance Metric Game success probability Bits/qubit advantage, violation strength, latency
Many-Body Aspect N-qubit GHZ state contextuality CGLMP-8 qudit encoding (8-dimensional)

Distributed GHZ State Coding: Optimal Performance

Key Insight from Google Paper: GHZ states enable perfect coordination in distributed scenarios through measurement contextuality, not just entanglement.

MetaTT's Distributed GHZ-Like Architecture:

  • Current Implementation: 3 Bell pairs (qubits 0-3, 1-4, 2-5) creating distributed entanglement
  • GHZ Extension: Can be extended to full GHZ state: |GHZ₆⟩ = (|000000⟩ + |111111⟩)/√2
  • Advantage: GHZ states provide:
    • Perfect correlation across all qubits (not just pairs)
    • Measurement contextuality enabling classically impossible coordination
    • Optimal performance for distributed quantum computing tasks

Performance Comparison:

Metric Google GHZ (N-player) MetaTT Bell Pairs MetaTT GHZ Extension (Potential)
Coordination Success 100% (perfect) 75% (CHSH > 2.0) ~95-100% (estimated)
Information Capacity N bits (N qubits) 3 bits (3 pairs) 6 bits (6-qubit GHZ)
Distributed Range Local (same processor) 100-300 km (fiber) 100-300 km (fiber, with repeaters)
Contextuality ✓ Explicit ✓ Implicit (Bell violations) ✓ Explicit (GHZ correlations)

Synergistic Advantages: Combining Approaches

MetaTT + Google GHZ Insights:

  • Enhanced Coordination: GHZ state coding could improve MetaTT's coordination success from 75% to near-perfect (95-100%)
  • Better Contextuality: Explicit GHZ measurement contextuality provides stronger quantum advantage certification
  • Distributed Optimization: Google's N-player framework maps directly to MetaTT's distributed trading nodes (NYSE/NASDAQ)
  • Information Advantage: GHZ states enable optimal information transfer: N bits for N qubits (vs 3 bits for 3 pairs)
  • Many-Body Contextuality: Google's many-body contextuality analysis complements MetaTT's CGLMP-8 qudit encoding

Recommended Enhancement: Extend MetaTT to use distributed GHZ states (|GHZ₆⟩) instead of Bell pairs, leveraging Google's contextuality insights for optimal performance in distributed HFT scenarios.

References

GitHub Repository

The complete Python script and all related files are available in the GitHub repository:

Repository: github.com/teraq-platform/teraq-finance

Clone the repository:

git clone https://github.com/teraq-platform/teraq-finance.git
cd teraq-finance
pip install -r requirements.txt

Key Files:

  • quantum_metatt_final_corrected.py - Complete implementation (~2,366 lines, 8 major classes, 9-step main pipeline)
  • quantum_metatt_FINAL.py - Final production version
  • README.md - Complete documentation and overview
  • Quantum_MetaTT_Summary.html - Algorithm summary documentation
  • AARONSON_CORRECTIONS_SUMMARY.md - Aaronson framework corrections
  • requirements.txt - Python dependencies

Total Lines: ~2,366 lines
Key Components: 8 major classes, 9-step main pipeline, comprehensive analysis