Quantum MetaTT: Complete Implementation Tutorial
Full documentation of the Quantum MetaTT framework with tomography, CGLMP analysis, and Aaronson framework integration
Overview
This tutorial documents the complete Quantum MetaTT (Meta Trading Telepathy) Python implementation, which integrates quantum state tomography, Bell inequality testing (CHSH & CGLMP), and the Aaronson quantum information supremacy framework for financial prediction tasks.
GitHub Repository: github.com/teraq-platform/teraq-finance
Key Features: Complete pipeline from LOBSTER data training → Bell state preparation → Minimal tomography → Density matrix reconstruction → CGLMP/CHSH computation → Aaronson framework analysis → Distributed entanglement analysis
Script Architecture
Core Classes
1. BellInequality (Base Class)
- Abstract base class for Bell inequality implementations
- Methods:
classical_bound(),quantum_bound(),compute_from_density_matrix()
2. CHSH (BellInequality)
- CHSH inequality for qubits (d=2)
- Classical bound: 2.0, Quantum bound: 2√2 ≈ 2.828
- Key methods:
predict_chsh(visibility): Analytical predictioncompute_from_density_matrix(rho): Compute from density matrixcompute_from_density_matrix_specific_qubits(rho, qubits): For specific qubit pairs
3. CGLMP_Analytical (BellInequality)
- CGLMP inequality for qudits (generalizes CHSH to d>2)
- Supports d=2, d=4, d=8 dimensions
- Quantum bound: 2.0 + (d-1)/d × √2
- Key methods:
predict_cglmp(visibility): Analytical predictioncompute_from_density_matrix(rho): Direct computation from density matrix_expectation_value(rho, setting_a, setting_b): Compute correlation functions
4. NoiseAnalysis
- Comprehensive noise and latency analysis
- Methods:
compare_bell_inequalities(visibility_range): Compare CHSH vs CGLMPnoise_threshold_analysis(): Find minimum visibility for violationslatency_budget(hardware_spec, n_tomo_measurements): Complete latency breakdownoptimization_strategies(current_latency_us, target_us): Suggest optimizations
5. AaronsonAnalysis
- Quantum information supremacy analysis (arXiv:2509.07255)
- Maps Bell violations → visibility → FXEB → classical bits required
- Key methods:
bell_to_visibility(bell_value, bell_type): Convert Bell value to visibilityvisibility_to_fxeb(visibility): Convert to FXEB parameter εclassical_bits_required(epsilon, n_qubits, measurement_type): Compute classical bitscomprehensive_fiber_channel_analysis(max_distance_km): Distributed entanglement analysis
6. MinimalTomography
- Minimal Pauli tomography for 6-qubit system (Schwemmer et al., arXiv:1310.8465)
- Methods:
generate_minimal_pauli_set(): Generate ~45 Pauli measurementsrun_tomography(qc): Execute tomographyreconstruct_density_matrix(expectations): Three reconstruction methods (LIN, ML, Physical)
7. QuantumMetaTT_Hybrid (PyTorch Model)
- Hybrid classical-quantum neural network
- Components:
HybridQubitQuditMPSLayer: Quantum MPS layer with 12 qubits, bond dimension d=8- Classical input/output layers
- 8-class financial prediction output
8. HardwareSpec
- Real hardware specifications for superconducting, trapped ion, Quantinuum
- Methods:
get_spec(platform): Get hardware specsbuild_noise_model(platform): Build realistic noise model
Main Pipeline (main() function)
Step 1: Load LOBSTER Data
- Loads limit order book data from LOBSTER dataset
- Preprocesses: 40 features → 8-class labels (price movement + volume regime)
- Function:
load_lob_data(data_dir, use_test)
Step 2: Train Quantum MetaTT
- Trains hybrid quantum-classical model on financial data
- 15 epochs, batch size 512, Adam optimizer
- Output: Trained model with test accuracy
Step 3: Prepare Bell State Circuit
- Creates d=8 qudit Bell state using 6 qubits
- Function:
create_bell_state_d8() - Structure: 3 Bell pairs (qubits 0-3, 1-4, 2-5)
Step 4: Run Minimal Tomography
- 49 Pauli string measurements (vs 4,096 for full tomography)
- 5,000 shots per measurement
- Output: Dictionary of Pauli expectation values
Step 5: Reconstruct Density Matrix
- Three methods: Linear Inversion (LIN), Maximum Likelihood (ML), Physical Projection
- Compares with ideal state and direct noisy simulation
- Output: Density matrices and fidelities
Step 6: Compute CGLMP & CHSH
- Computes Bell inequality values from reconstructed density matrix
- Compares measured vs predicted values
- Analyzes noise sensitivity
Step 7: ISM Trading Certification
- Complete latency breakdown
- Checks if total latency < 10 μs target
- Provides optimization strategies if exceeding budget
Step 8: Aaronson Framework Analysis
- Maps Bell violations → visibility → FXEB → classical bits
- Compares CHSH vs CGLMP at same visibility
- Error impact analysis
- Comparison to Kretschmer et al. paper results
Step 9: Comprehensive Fiber Channel Analysis
- Analyzes CGLMP vs CHSH over fiber optic channels (0-300 km)
- Three hardware scenarios: Superconducting, Trapped Ion, Quantinuum
- Corrected physics model: Signal-to-noise visibility (not just photon loss)
- Output: Maximum violation ranges, distance advantages
Key Code Snippets
# Bell State Preparation (d=8 qudit pair) def create_bell_state_d8(): """Create maximally entangled d=8 qudit pair""" qc = QuantumCircuit(6, name='Bell_d8') qc.h(0) qc.h(1) qc.h(2) qc.cx(0, 3) qc.cx(1, 4) qc.cx(2, 5) return qc # CGLMP Computation def compute_from_density_matrix(self, rho): I_cglmp = 0.0 for k in range(self.d - 1): k_next = (k + 1) % self.d E_0k = self._expectation_value(rho, 0, k) E_1k = self._expectation_value(rho, 1, k) E_1k_next = self._expectation_value(rho, 1, k_next) E_0k_next = self._expectation_value(rho, 0, k_next) I_cglmp += np.real(E_0k - E_1k + E_1k_next + E_0k_next) return I_cglmp # Aaronson Framework: Classical Bits Required def classical_bits_required(self, epsilon, n_qubits, measurement_type='clifford'): # First term: ε² × 2^n term1 = epsilon**2 * (2**n_qubits) # Second term: ε × 2^(n - O(√n)) coefficient = 1.5 if measurement_type == 'clifford' else 1.0 term2 = epsilon * (2**(n_qubits - coefficient * np.sqrt(n_qubits))) # Take minimum return min(term1, term2)
Usage Instructions
Prerequisites
- Python 3.8+
- Required packages: numpy, pandas, torch, qiskit, qiskit-aer
- LOBSTER dataset (or synthetic data will be used if unavailable)
Running the Script
# Clone the repository first git clone https://github.com/teraq-platform/teraq-finance.git cd teraq-finance pip install -r requirements.txt # Basic execution python3 quantum_metatt_final_corrected.py # The script will: # 1. Prompt for hardware platform selection (1-3) # 2. Load/train on LOBSTER data # 3. Execute full pipeline # 4. Output comprehensive analysis
Configuration
DATA_DIR: Path to LOBSTER datasetUSE_TEST_FILES_FOR_TRAINING: Use test files for training (faster)FAST_MODE_SHOTS: Number of shots per measurement (default: 5000)
Google Paper Comparison: Distributed GHZ State Coding
Google Quantum AI (arXiv:2512.02284): "Quantum–Classical Separation in Bounded-Resource Tasks"
Published: December 1, 2025
Key Focus: Measurement contextuality and N-player GHZ games for quantum-classical separation
Google's Approach: N-Player GHZ Parity Game
- State: N-qubit GHZ state |GHZ⟩ = (|0...0⟩ + |1...1⟩)/√2
- Game: N players receive classical bits xⱼ ∈ {0,1} with promise Σⱼ xⱼ is even
- Win Condition: Players output yⱼ such that Σⱼ yⱼ = Σⱼ xⱼ/2 (mod 2)
- Classical Success: 1/2 + 1/2⌊N/2⌋ (random guessing)
- Quantum Success: Perfect (100%) with GHZ state
- Contextuality: Demonstrates measurement contextuality in many-body systems
Google's Key Results
- Implemented magic square game and Kochen-Specker-Bell inequality violation
- Demonstrated N-player GHZ game exceeding classical success rate
- Solved 2D hidden linear function problem with quantum advantage
- Proposed contextuality-based benchmarking for quantum processors
- Emphasis: Contextuality (not just entanglement) as computational resource
Contrast: MetaTT vs Google Approach
| Aspect | Google (arXiv:2512.02284) | MetaTT Implementation |
|---|---|---|
| Quantum State | N-qubit GHZ state (|0...0⟩ + |1...1⟩)/√2 | d=8 qudit Bell pairs (3 pairs, 6 qubits total) |
| Focus | Measurement contextuality | Bell inequality violations (CHSH, CGLMP) |
| Application | Contextuality-based benchmarking | Financial prediction & HFT coordination |
| Distributed Coding | N-player cooperative games | Distributed entanglement over fiber (50-300 km) |
| Performance Metric | Game success probability | Bits/qubit advantage, violation strength, latency |
| Many-Body Aspect | N-qubit GHZ state contextuality | CGLMP-8 qudit encoding (8-dimensional) |
Distributed GHZ State Coding: Optimal Performance
Key Insight from Google Paper: GHZ states enable perfect coordination in distributed scenarios through measurement contextuality, not just entanglement.
MetaTT's Distributed GHZ-Like Architecture:
- Current Implementation: 3 Bell pairs (qubits 0-3, 1-4, 2-5) creating distributed entanglement
- GHZ Extension: Can be extended to full GHZ state: |GHZ₆⟩ = (|000000⟩ + |111111⟩)/√2
- Advantage: GHZ states provide:
- Perfect correlation across all qubits (not just pairs)
- Measurement contextuality enabling classically impossible coordination
- Optimal performance for distributed quantum computing tasks
Performance Comparison:
| Metric | Google GHZ (N-player) | MetaTT Bell Pairs | MetaTT GHZ Extension (Potential) |
|---|---|---|---|
| Coordination Success | 100% (perfect) | 75% (CHSH > 2.0) | ~95-100% (estimated) |
| Information Capacity | N bits (N qubits) | 3 bits (3 pairs) | 6 bits (6-qubit GHZ) |
| Distributed Range | Local (same processor) | 100-300 km (fiber) | 100-300 km (fiber, with repeaters) |
| Contextuality | ✓ Explicit | ✓ Implicit (Bell violations) | ✓ Explicit (GHZ correlations) |
Synergistic Advantages: Combining Approaches
MetaTT + Google GHZ Insights:
- Enhanced Coordination: GHZ state coding could improve MetaTT's coordination success from 75% to near-perfect (95-100%)
- Better Contextuality: Explicit GHZ measurement contextuality provides stronger quantum advantage certification
- Distributed Optimization: Google's N-player framework maps directly to MetaTT's distributed trading nodes (NYSE/NASDAQ)
- Information Advantage: GHZ states enable optimal information transfer: N bits for N qubits (vs 3 bits for 3 pairs)
- Many-Body Contextuality: Google's many-body contextuality analysis complements MetaTT's CGLMP-8 qudit encoding
Recommended Enhancement: Extend MetaTT to use distributed GHZ states (|GHZ₆⟩) instead of Bell pairs, leveraging Google's contextuality insights for optimal performance in distributed HFT scenarios.
References
- Schwemmer et al., "Systematic errors in current quantum state tomography tools", Phys. Rev. Lett. 114, 080403 (2015), arXiv:1310.8465
- Kretschmer et al., "Demonstrating an unconditional separation between quantum and classical information resources", arXiv:2509.07255 (2024)
- Collins et al., "Bell Inequalities for Arbitrarily High-Dimensional Systems", Phys. Rev. Lett. 88, 040404 (2002)
- Google Quantum AI, "Quantum–Classical Separation in Bounded-Resource Tasks Arising from Measurement Contextuality", arXiv:2512.02284 (2025)
GitHub Repository
The complete Python script and all related files are available in the GitHub repository:
Repository: github.com/teraq-platform/teraq-finance
Clone the repository:
git clone https://github.com/teraq-platform/teraq-finance.git cd teraq-finance pip install -r requirements.txt
Key Files:
quantum_metatt_final_corrected.py- Complete implementation (~2,366 lines, 8 major classes, 9-step main pipeline)quantum_metatt_FINAL.py- Final production versionREADME.md- Complete documentation and overviewQuantum_MetaTT_Summary.html- Algorithm summary documentationAARONSON_CORRECTIONS_SUMMARY.md- Aaronson framework correctionsrequirements.txt- Python dependencies
Total Lines: ~2,366 lines
Key Components: 8 major classes, 9-step main pipeline, comprehensive analysis